Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 309, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661971

RESUMO

An alpha-proteobacterial strain JXJ CY 53 T was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) collected from Lake Dianchi, China. JXJ CY 53 T was observed to be an aerobic, Gram-stain-negative, oval shaped, and mucus-secreting bacterium. It had C18:1ω7c and C16:0 as the major cellular fatty acids, Q-10 as the predominant ubiquinone, and sphingoglycolipid, diphosphatidylglycerol, phosphatidylcholine, and phosphatidylmethylethanolamine as the polar lipids. The G + C content of DNA was 65.85%. The bacterium had 16S rRNA gene sequence identities of 98.9% and 98.7% with Sphingomonas panni DSM 15761 T and Sphingomonas hankookensis KCTC 22579 T, respectively, while less than 97.4% identities with other members of the genus. Further taxonomic analysis indicated that JXJ CY 53 T represented a new member of Sphingomonas, and the species epithet was proposed as Sphingomonas lacusdianchii sp. nov. (type strain JXJ CY 53 T = KCTC 72813 T = CGMCC 1.17657 T). JXJ CY 53 T promoted the growth of MF-905 by providing bio-available phosphorus and nitrogen, plant hormones, vitamins, and carotenoids. It could modulate the relative abundances of nonculturable bacteria associated with MF-905 and influence the interactions of MF-905 and other bacteria isolated from the cyanobacterium, in addition to microcystin production characteristics. Meanwhile, MF-905 could provide JXJ CY 53 T dissolved organic carbon for growth, and control the growth of JXJ CY 53 T by secreting specific chemicals other than microcystins. Overall, these results suggest that the interactions between Microcystis and its attached bacteria are complex and dynamic, and may influence the growth characteristics of the cyanobacterium. This study provided new ideas to understand the interactions between Microcystis and its attached bacteria. KEY POINTS: • A novel bacterium (JXJCY 53 T) was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) • JXJCY 53 T modulated the growth and microcystin production of MF-905 • MF-905 could control the attached bacteria by specific chemicals other than microcystins (MCs).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Sphingomonas , Sphingomonas/metabolismo , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/classificação , RNA Ribossômico 16S/genética , China , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , Fosfolipídeos/análise , Microcystis/genética , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Lagos/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Simbiose , Ubiquinona
2.
Arch Microbiol ; 206(3): 119, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396312

RESUMO

An aerobic bacterium, designated as PT-12T, was isolated from soil collected from agriculture field, and its taxonomic position was validated through a comprehensive polyphasic methodology. The strain was identified as Gram-stain-negative, non-motile, rod-shaped, and catalase- and oxidase-positive. The yellow-colored colonies showed growth ability at temperature range of 18-37 °C, NaCl content of 0-1.0% (w/v), and at a pH of 6.0-8.0. The 16S rRNA gene and phylogenetic analysis showed that strain PT-12T affiliated with the genus Sphingomonas in the family Sphingomonadaceae, and displayed the highest 16S rRNA nucleotide sequence similarity with Sphingomonas limnosediminicola 03SUJ6T (98.4%). The genome size of strain PT-12T was 2,656,862 bp and the DNA G + C content estimated from genome was 63.5%. The highest values of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were observed between strain PT-12T and Sphingomonas segetis YJ09T, accounting to 76.2% and 20.2%, respectively. In addition, both ANI and dDDH values between strain PT-12T and other phylogenetically related neighbors ranged between 69.6% and 76.2% and 18.4% and 20.2%, respectively. Chemotaxonomic features exhibited Q-10 as the only ubiquinone; homospermidine as the major polyamine; summed feature 8 (C18:1ω7c and/or C18:1ω6c), C16:0, and 10-methyl C18:0 as the notable fatty acids; and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, and sphingoglycolipid as dominating polar lipids. Overall, the comprehensive polyphasic data supported that strain PT-12T represents a novel bacterial species within the genus Sphingomonas. Accordingly, we propose the name Sphingomonas flavescens sp. nov. The type strain is PT-12T (= KCTC 92114T = NBRC 115717T).


Assuntos
Fosfolipídeos , Sphingomonas , Fosfolipídeos/química , Sphingomonas/genética , Filogenia , RNA Ribossômico 16S/genética , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Espermidina , Microbiologia do Solo , Ácidos Graxos/química , Análise de Sequência de DNA
3.
Environ Microbiol ; 26(1): e16577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183371

RESUMO

Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.


Assuntos
Poluentes Ambientais , Oryza , Fenantrenos , Poluentes do Solo , Sphingomonas , Cádmio/metabolismo , Oryza/metabolismo , Poluentes Ambientais/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteômica , Poluentes do Solo/metabolismo , Fenantrenos/metabolismo , Solo , Rizosfera
4.
Appl Environ Microbiol ; 90(2): e0215823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289134

RESUMO

Drought and salinity are ubiquitous environmental factors that pose hyperosmotic threats to microorganisms and impair their efficiency in performing environmental functions. However, bacteria have developed various responses and regulatory systems to cope with these abiotic challenges. Posttranscriptional regulation plays vital roles in regulating gene expression and cellular homeostasis, as hyperosmotic stress conditions can lead to the induction of specific small RNA molecules (sRNAs) that participate in stress response regulation. Here, we report a candidate functional sRNA landscape of Sphingomonas melonis TY under hyperosmotic stress, and 18 sRNAs were found with a clear response to hyperosmotic stress. These findings will help in the comprehensive analysis of sRNA regulation in Sphingomonas species. Weighted correlation network analysis revealed a 263 nucleotide sRNA, SNC251, which was transcribed from its own promoter and showed the most significant correlation with hyperosmotic response factors. Deletion of snc251 affected biofilm formation and multiple cellular processes, including ribosome-related pathways, aromatic compound degradation, and the nicotine degradation capacity of S. melonis TY, while overexpression of SNC251 facilitated biofilm formation by TY under hyperosmotic stress. Two genes involved in the TonB system were further verified to be activated by SNC251, which also indicated that SNC251 is a trans-acting sRNA. Briefly, this research reports a landscape of sRNAs participating in the hyperosmotic stress response in S. melonis and reveals a novel sRNA, SNC251, which contributes to the S. melonis TY biofilm formation and thus enhances its hyperosmotic stress response ability.IMPORTANCESphingomonas species play a vital role in plant defense and pollutant degradation and survive extensively under drought or salinity. Previous studies have focused on the transcriptional and translational responses of Sphingomonas under hyperosmotic stress, but the posttranscriptional regulation of small RNA molecules (sRNAs) is also crucial for quickly modulating cellular processes to adapt dynamically to osmotic environments. In addition, the current knowledge of sRNAs in Sphingomonas is extremely scarce. This research revealed a novel sRNA landscape of Sphingomonas melonis and will greatly enhance our understanding of sRNAs' acting mechanisms in the hyperosmotic stress response.


Assuntos
Pequeno RNA não Traduzido , Sphingomonas , Sphingomonas/genética , RNA Bacteriano/genética , Bactérias/genética , Osmorregulação/genética , Regulação Bacteriana da Expressão Gênica
5.
Microb Biotechnol ; 17(2): e14394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226955

RESUMO

Corn straw is an abundant and renewable alternative for microbial biopolymer production. In this paper, an engineered Sphingomonas sanxanigenens NXG-P916 capable of co-utilising glucose and xylose from corn straw total hydrolysate to produce xanthan gum was constructed. This strain was obtained by introducing the xanthan gum synthetic operon gum as a module into the genome of the constructed chassis strain NXdPE that could mass produce activated precursors of polysaccharide, and in which the transcriptional levels of gum genes were optimised by screening for a more appropriate promoter, P916 . As a result, strain NXG-P916 produced 9.48 ± 0.34 g of xanthan gum per kg of fermentation broth (g/kg) when glucose was used as a carbon source, which was 2.1 times improved over the original engineering strain NXdPE::gum. Furthermore, in batch fermentation, 12.72 ± 0.75 g/kg xanthan gum was produced from the corn straw total hydrolysate containing both glucose and xylose, and the producing xanthan gum showed an ultrahigh molecular weight (UHMW) of 6.04 × 107 Da, which was increased by 15.8 times. Therefore, the great potential of producing UHMW xanthan gum by Sphingomonas sanxanigenens was proved, and the chassis NXdPE has the prospect of becoming an attractive platform organism producing polysaccharides derived from biomass hydrolysates.


Assuntos
Glucose , Polissacarídeos Bacterianos , Sphingomonas , Xilose , Sphingomonas/genética , Zea mays , Peso Molecular
6.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140971, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935252

RESUMO

Glutaredoxin 3 (Grx3), a redox protein with a thioredoxin-fold structure, maintains structural integrity and glutathione (GSH) binding capabilities across varying habitat temperatures. The cis-Pro loop, essential for GSH binding, relies on the Arg-Asp salt bridge (α2-α3) and Gln-His hydrogen bond (ß3-ß4) for its conformation. In some psychrophilic Grx3 variants, Arg in α2 is replaced with Tyr, and His in ß4 is replaced with Phe. This study examines the roles of these bonds in Grx3's structure, function, and cold adaptation, using SpGrx3 from the Arctic bacterium Sphingomonas sp. Despite its cold habitat, SpGrx3 maintains the Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond. The R51Y substitution disrupts the α2-α3 salt bridge, while the H63F and H63Y substitutions hinder the salt bridge through cation-π interactions with Arg51, involving Phe63/Tyr63, thereby enhancing flexibility. Conversely, mutations that disrupt the hydrogen bond (Q56A, H63A, and H63F) reduce thermal stability. In the psychrophilic Grx3 configuration A48T/R51Y/H63F, a Thr48-Gln56 hydrogen bond stabilizes the cis-Pro loop, enhancing flexibility by disrupting both bonds. Furthermore, all mutants exhibit reduced α-helical content and catalytic efficiency. In summary, the highly conserved Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond are crucial for stabilizing the cis-Pro loop and catalytic activity in SpGrx3. His63 is favored as it avoids cation-π interactions with Arg51, unlike Phe63/Tyr63. Psychrophilic Grx3 variants have adapted to cold environments by reducing GSH binding and increasing structural flexibility. These findings deepen our understanding of the structural conservation in Grx3 for GSH binding and the critical alterations required for cold adaptation.


Assuntos
Glutarredoxinas , Sphingomonas , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Sphingomonas/genética , Sequência de Aminoácidos , Glutationa/metabolismo , Cátions
7.
J Mol Biol ; 436(5): 168412, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135178

RESUMO

For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.


Assuntos
Proteínas de Bactérias , Fotorreceptores Microbianos , Fotossíntese , Sphingomonas , Genômica , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Sphingomonas/genética , Sphingomonas/fisiologia , Genes Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
8.
Antonie Van Leeuwenhoek ; 117(1): 5, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153511

RESUMO

Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030T was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C14:0 2OH, and C16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030T was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5T (97.9%), Sphingomonas alpina DSM 22537T (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304T (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030T and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030T and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030T was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030T genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030T is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030T (= EE 013T = GDMCC 1.3123T = JCM 35386T).


Assuntos
Sphingomonas , Filogenia , RNA Ribossômico 16S/genética , Sphingomonas/genética , Genômica , Bactérias , Ácidos Graxos , DNA
9.
PLoS One ; 18(8): e0290686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651358

RESUMO

This study investigates the impact of aromatic cluster side-chain interactions in Grx3 (SpGrx3) from the psychrophilic Arctic bacterium Sphingomonas sp. Grx3 is a class I oxidoreductase with a unique parallel arrangement of aromatic residues in its aromatic cluster, unlike the tetrahedral geometry observed in Trxs. Hydrophilic-to-hydrophobic substitutions were made in the aromatic cluster, in ß1 (E5V and Y7F), adjacent ß2 (Y32F and Y32L), both ß1 and ß2 (E5V/Y32L), and short α2 (R47F). The hydrophobic substitutions, particularly those at or near Tyr7 (E5V, Y7F, Y32F, and R47F), increased melting temperatures and conformational stability, whereas disrupting ß1-ß2 interactions (Y32L and E5V/Y32L) led to structural instability of SpGrx3. However, excessive hydrophobic interactions (Y7F and E5V/Y32L) caused protein aggregation at elevated temperatures. All mutations resulted in a reduction in α-helical content and an increase in ß-strand content. The R47F mutant, which formed dimers and exhibited the highest ß-strand content, showed increased conformational flexibility and a significant decrease in catalytic rate due to the disturbance of ß1-α2 interactions. In summary, the configuration of the aromatic cluster, especially Tyr7 in the buried ß1 and Arg47 in the short α2, played crucial roles in maintaining the active conformation of SpGrx3 and preventing its protein aggregation. These modifications, reducing hydrophobicity in the central ß-sheet, distinguish Grx3 from other Trx-fold proteins, highlighting evolutionary divergence within the Trx-fold superfamily and its functional versatility.


Assuntos
Glutarredoxinas , Sphingomonas , Humanos , Agregados Proteicos , Sphingomonas/genética , Evolução Biológica , Febre
10.
J Microbiol Biotechnol ; 33(10): 1292-1298, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37528562

RESUMO

PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).


Assuntos
Fosfolipídeos , Sphingomonas , Fosfolipídeos/química , Sphingomonas/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Ácidos Graxos/química , República da Coreia , Técnicas de Tipagem Bacteriana
11.
Microbiol Spectr ; 11(4): e0136023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37436164

RESUMO

Bacteria are constantly exposed to a variety of environmental stresses. Temperature is considered one of the most important environmental factors affecting microbial growth and survival. As ubiquitous environmental microorganisms, Sphingomonas species play essential roles in the biodegradation of organic contaminants, plant protection, and environmental remediation. Understanding the mechanism by which they respond to heat shock will help further improve cell resistance by applying synthetic biological strategies. Here, we assessed the transcriptomic and proteomic responses of Sphingomonas melonis TY to heat shock and found that stressful conditions caused significant changes in functional genes related to protein synthesis at the transcriptional level. The most notable changes observed were increases in the transcription (1,857-fold) and protein expression (11-fold) of Hsp17, which belongs to the small heat shock protein family, and the function of Hsp17 in heat stress was further investigated in this study. We found that the deletion of hsp17 reduced the capacity of the cells to tolerate high temperatures, whereas the overexpression of hsp17 significantly enhanced the ability of the cells to withstand high temperatures. Moreover, the heterologous expression of hsp17 in Escherichia coli DH5α conferred to the bacterium the ability to resist heat stress. Interestingly, its cells were elongated and formed connected cells following the increase in temperature, while hsp17 overexpression restored their normal morphology under high temperature. In general, these results indicate that the novel small heat shock protein Hsp17 greatly contributes to maintaining cell viability and morphology under stress conditions. IMPORTANCE Temperature is generally considered the most important factor affecting metabolic functions and the survival of microbes. As molecular chaperones, small heat shock proteins can prevent damaged protein aggregation during abiotic stress, especially heat stress. Sphingomonas species are widely distributed in nature, and they can frequently be found in various extreme environments. However, the role of small heat shock proteins in Sphingomonas under high-temperature stress has not been elucidated. This study greatly enhances our understanding of a novel identified protein, Hsp17, in S. melonis TY in terms of its ability to resist heat stress and maintain cell morphology under high temperature, leading to a broader understanding of how microbes adapt to environmental extremes. Furthermore, our study will provide potential heat resistance elements for further enhancing cellular resistance as well as the synthetic biological applications of Sphingomonas.


Assuntos
Proteínas de Choque Térmico Pequenas , Sphingomonas , Proteínas de Choque Térmico Pequenas/genética , Sphingomonas/genética , Proteômica , Resposta ao Choque Térmico
12.
Curr Microbiol ; 80(8): 264, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386175

RESUMO

Two novel bacterial strains, designated as SM33T and NSE70-1T, were isolated from wet soil in South Korea. To get the taxonomic positions, the strains were characterized. The genomic information (both 16S rRNA gene and draft genome sequence analysis) show that both novel isolates (SM33T and NSE70-1T) belong to the genus Sphingomonas. SM33T share the highest 16s rRNA gene similarity (98.2%) with Sphingomonas sediminicola Dae20T. In addition, NSE70-1T show 96.4% 16s rRNA gene similarity with Sphingomonas flava THG-MM5T. The draft genome of strains SM33T and NSE70-1T consist of a circular chromosome of 3,033,485 and 2,778,408 base pairs with DNA G+C content of 63.9, and 62.5%, respectively. Strains SM33T and NSE70-1T possessed the ubiquinone Q-10 as the major quinone, and a fatty acid profile with C16:0, C18:1 2-OH, C16:1 ω7c/C16:1 ω6c (summed feature 3) and C18:1 ω7c/C18:1 ω6c (summed feature 8) as major fatty acids. The major polar lipids of SM33T and NSE70-1T were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine, respectively. Moreover, genomic, physiological, and biochemical results allowed the phenotypic and genotypic differentiation of strains SM33T and NSE70-1T from their closest and other species of the genus Sphingomonas with validly published names. Therefore, the SM33T and NSE70-1T represent novel species of the genus Sphingomonas, for which the name Sphingomonas telluris sp. nov. (type strain SM33T = KACC 22222T = LMG 32193T), and Sphingomonas caseinilyticus (type strain NSE70-1T = KACC 22411T = LMG 32495T).


Assuntos
Sphingomonas , RNA Ribossômico 16S/genética , Sphingomonas/genética , Ácidos Graxos , Genômica , Genótipo
13.
Int J Biol Macromol ; 242(Pt 2): 124899, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196715

RESUMO

Gellan gum (GG) is used in many industries. Here, we obtained a low molecular weight GG (L-GG) directly produced by M155, the high-yield mutant strain of Sphingomonas paucimobilis ATCC 31461, which was selected using UV-ARTP combined mutagenesis. The molecular weight of L-GG was 44.6 % lesser than that of the initial GG (I-GG), and the GG yield increased by 24 %. The monosaccharide composition and Fourier transform-infrared spectroscopic patterns of L-GG were similar to those of I-GG, which indicated that the decrease in the molecular weight of L-GG was probably because of reduction in the degree of polymerization. In addition, microstructural analysis revealed that the surface of L-GG was rougher, with smaller pores and tighter network, than that of I-GG. L-GG showed low hardness, gumminess, and chewiness, which are indicative of better taste. The results of rheological analysis revealed that the L-GG solution is a typical non-Newtonian fluid with low viscoelasticity, which exhibited stable dynamic viscoelasticity within 20-65 °C. To the best of our knowledge, this is the first report of direct biosynthesis of low molecular weight GG during fermentation, which will reduce the manufacturing costs. Our observations provide a reference for precise and expanded applications of GG.


Assuntos
Polissacarídeos Bacterianos , Sphingomonas , Peso Molecular , Fermentação , Polissacarídeos Bacterianos/química , Sphingomonas/genética , Sphingomonas/química
14.
Appl Environ Microbiol ; 89(5): e0032423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37071026

RESUMO

A gene cluster ndp, responsible for nicotine degradation via a variant of the pyridine and pyrrolidine pathways, was previously identified in Sphingomonas melonis TY, but the regulation mechanism remains unknown. The gene ndpR within the cluster was predicted to encode a TetR family transcriptional regulator. Deletion of ndpR resulted in a notably shorter lag phase, higher maximum turbidity, and faster substrate degradation when cultivated in the presence of nicotine. Real-time quantitative PCR and promoter activity analysis in wild-type TY and TYΔndpR strains revealed that genes in the ndp cluster were negatively regulated by NdpR. However, complementation of ndpR to TYΔndpR did not restore transcription repression, but, instead, the complemented strain showed better growth than TYΔndpR. Promoter activity analysis indicates that NdpR also functions as an activator in the transcription regulation of ndpHFEGD. Further analysis through electrophoretic mobility shift assay and DNase I footprinting assay revealed that NdpR binds five DNA sequences within ndp and that NdpR has no autoregulation. These binding motifs overlap with the -35 or -10 box or are located distal upstream of the corresponding transcriptional start site. Multiple sequence alignment of these five NdpR-binding DNA sequences found a conserved motif, with two of the binding sequences being partially palindromic. 2,5-Dihydroxypyridine acted as a ligand of NdpR, preventing NdpR from binding to the promoter region of ndpASAL, ndpTB, and ndpHFEGD. This study revealed that NdpR binds to three promoters in the ndp cluster and is a dual-role transcriptional regulator in nicotine metabolism. IMPORTANCE Gene regulation is critical for microorganisms in the environment in which they may encounter various kinds of organic pollutants. Our study revealed that transcription of ndpASAL, ndpTB, and ndpHFEGD is negatively regulated by NdpR, and NdpR also exhibits a positive regulatory effect on PndpHFEGD. Furthermore, 2,5-dihydroxypyridine was identified as the effector molecular for NdpR and can both prevent the binding of free NdpR to the promoter and release NdpR from the promoters, which is different from previously reported NicR2. Additionally, NdpR was found to have both negative and positive transcription regulatory effects on the same target, PndpHFEGD, while only one binding site was identified, which is notably different from the previously reported TetR family regulators. Moreover, NdpR was revealed to be a global transcriptional regulator. This study provides new insight into the complex gene expression regulation of the TetR family.


Assuntos
Nicotina , Sphingomonas , Nicotina/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Regiões Promotoras Genéticas , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Arch Microbiol ; 205(4): 132, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959350

RESUMO

Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 µmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.


Assuntos
Dendrobium , Sphingomonas , Dendrobium/genética , Dendrobium/microbiologia , Sphingomonas/genética , Cádmio , Antioxidantes
16.
FEBS Open Bio ; 13(3): 500-510, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680400

RESUMO

Glutaredoxins (Grxs) are small proteins that share a well-conserved thioredoxin (Trx)-fold and participate in many biological processes. This study examined the cold adaptation mechanism of a Fe-S cluster binding class II Grx4 (SpGrx4) from the psychrophilic Arctic bacterium Sphingomonas sp. PAMC 26621. Three polar residues close to the cis-proline residue (P73) of SpGrx4 form a hydrogen bond network (Q74-S67-Y76) with the cis-proline loop main chain. The hydroxyl group of S67 or Y76 or both is replaced in similar Grxs depending on the temperature of the habitat. Mutants with reduced hydrogen bonds (S67A, Q74A, Y76F, and S67A/Y76W) were more susceptible to urea-induced unfolding and more flexible than the wild-type (WT). By contrast, Y76W, with a bulky indole group, was the most stable. These mutants showed higher melting temperatures than WT as a consequence of increased hydrophobic interactions. These results suggest that the tyrosine residue, Y76, is preferred for the cold adaptation of SpGrx4 with a heat-labile structure despite the rigid cis-proline loop, due to hydrogen bond formation. An aromatic residue on ß3 (cis-proline plus3) modulates the stability-flexibility of the cis-proline loop for temperature adaptation of prokaryotic class II Grx4 members via hydrogen bonds and hydrophobic interactions.


Assuntos
Sphingomonas , Sphingomonas/genética , Glutarredoxinas/genética , Temperatura Alta , Proteínas , Prolina/química
17.
Mar Biotechnol (NY) ; 25(1): 192-203, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635576

RESUMO

The polysaccharide WL gum is produced by the marine microorganism Sphingomonas sp. WG and presents great commercial utility potential in many industries especially in oil industries. However, the high fermentation cost limits its wide application. Therefore, an efficient production system at a lower cost was established using beet molasses to partially replace the commonly used carbon sources. Four different molasses were screened and their composition was investigated. One-factor design and RSM statistical analysis were employed to optimize the WL gum fermentation medium. The effects of molasses on the rheological properties and gene expression of WL gum were also investigated. The results showed that the pretreated beet molasses generated both high broth viscosity and WL gum production (12.94 Pa·s and 11.16 g/L). Heavy metal ions and ash were found to be the key factors in unpretreated and pretreated molasses affecting WL production. The cost-efficient production medium contained (g/L): sucrose 61.79, molasses 9.95, yeast extract 1.23, K2HPO4 1, MgSO4 0.1, ZnSO4 0.1 and the WL gum production reached 40.25 ± 1.15 g/L. The WL gum product WL-molasses showed the higher apparent viscosity, and viscous modulus and elastic modulus than WL-sucrose and WL-mix, which might be related to its highest molecular mass. The higher expressional level of genes such as pgm, ugp, ugd, rmlA, welS, and welG in WL gum synthesis in the mixed carbon source medium caused the high production and broth viscosity. This work provided a cost-efficient method for WL gum production.


Assuntos
Sphingomonas , Sphingomonas/genética , Sphingomonas/metabolismo , Sacarose/metabolismo , Melaço , Carbono/metabolismo , Fermentação , Meios de Cultura
18.
Arch Biochem Biophys ; 736: 109524, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716801

RESUMO

Alkaline phosphatases (APs), represented by E. coli AP (ECAP), employ an arginine residue to stabilize the phosphoryl group in the active site; whereas, AP from Sphingomonas (SPAP) shows a unique combination of substrate-binding residues; Thr89, Asn110, Lys171, and Arg173. Although such combination has been observed only in SPAP, these residues are present separately in different members of the AP superfamily. Here, we establish the presence of two distinct classes of APs; ECAP-type and SPAP-type. Bioinformatic analyses show that SPAP-type of APs are widely distributed in the bacterial kingdom. The role of active site residues in the catalytic mechanism has been delineated through a set of crystal structures reported here. These structures, representing different stages of the reaction pathway provide wealth of information for the catalytic mechanism. Despite critical differences in the substrate binding residues, SPAP follows a mechanism similar to that of ECAP-type of APs. Structure-based phylogenetic analysis suggests that SPAP and ECAP may have diverged very early during the evolution from a common ancestor. Moreover, it is proposed that the SPAP-type of APs are fundamental members of the AP superfamily and are more closely related to other members of the superfamily as compared to the ECAP-type of APs.


Assuntos
Fosfatase Alcalina , Sphingomonas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Domínio Catalítico
19.
Environ Res ; 219: 115014, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549482

RESUMO

Hyperosmotic stress is one of the most ubiquitous stress factors in microbial habitats and impairs the efficiency of bacteria performing vital biochemical tasks. Sphingomonas serves as a 'superstar' of plant defense and pollutant degradation, and is widely existed in the environment. However, it is still unclear that how Sphingomonas sp. survives under hyperosmotic stress conditions. In this study, multiomics profiling analysis was conducted with S. melonis TY under hyperosmotic conditions to investigate the intracellular hyperosmotic responses. The transcriptome and proteome revealed that sensing systems, including most membrane protein coding genes were upregulated, genes related to two-component systems were tiered adjusted to reset the whole system, other stress response regulators such as sigma-70 were also significantly tiered upregulated. In addition, transport systems together with compatible solute biosynthesis related genes were significantly upregulated to accumulate intracellular nutrients and compatible solutes. When treated with hyperosmotic stress, redox-stress response systems were triggered and mechanosensitive channels together with ion transporters were induced to maintain cellular ion homeostasis. In addition, cellular concentration of c-di-guanosine monophosphate synthetase (c-di-GMP) was reduced, followed by negative influences on genes involved in flagellar assembly and chemotaxis pathways, leading to severe damage to the athletic ability of S. melonis TY, and causing detachments of biofilms. Briefly, this research revealed a comprehensive response mechanism of S. melonis TY exposure to hyperosmotic stress, and emphasized that flagellar assembly and biofilm formation were vulnerable to hyperosmotic conditions. Importance. Sphingomonas, a genus with versatile functions survives extensively, lauded for its prominent role in plant protection and environmental remediation. Current evidence shows that hyperosmotic stress as a ubiquitous environmental factor, usually threatens the survival of microbes and thus impairs the efficiency of their environmental functions. Thus, it is essential to explore the cellular responses to hyperosmotic stress. Hence, this research will greatly enhance our understanding of the global transcriptional and translational regulation of S. melonis TY in response to hyperosmotic stress, leading to broader perspectives on the impacts of stressful environments.


Assuntos
Proteínas de Bactérias , Sphingomonas , Proteínas de Bactérias/genética , Sphingomonas/genética , Sphingomonas/metabolismo , Transcriptoma , Regulação Bacteriana da Expressão Gênica
20.
Arch Microbiol ; 205(1): 16, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477930

RESUMO

Three bacterial strains, designated RP10T, RMG20T, and MG17T, were isolated from Liriope platyphylla fruit (strain RP10T), soil (RMG20T), and Tagetes patula roots (MG17T) collected in Goyang, Republic of Korea. The 16S rRNA gene sequences revealed that strains RP10T, RMG20T, and MG17T were closely related to Sphingomonas melonis DSM 14444 T (highest similarity of the strain RP10T), Sphingomonas asaccharolytica DSM 10564 T (strain RMG20T), and Sphingomonas suaedae JCM 33850 T (strain MG17T) with 98.0-99.0% highest sequence similarity. The 16S rRNA gene sequences similarity between strains RP10T, RMG20T, and MG17T was 96.6-97.4%. Strains RP10T, RMG20T, MG17T, and the closely related type strains have digital DNA-DNA hybridization and average nucleotide identity values of 19.4-65.3% and 74.0-95.7%, respectively. Based on phylogenetic, biochemical, chemotaxonomic, and phenotypic data, strains RP10T, RMG20T, and MG17T are considered to represent novel species of the genus Sphingomonas, for which the name Sphingomonas liriopis sp. nov. (type strain RP10T = KACC 22357 T = TBRC 15161 T), Sphingomonas donggukensis sp. nov. (type strain RMG20T = KACC 22358 T = TBRC 15162 T), and Sphingomonas tagetis sp. nov. (type strain MG17T = KACC 22355 T = TBRC 15160 T), are proposed.


Assuntos
Sphingomonas , Tagetes , Solo , Sphingomonas/genética , Frutas , RNA Ribossômico 16S/genética , Filogenia , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...